

Universität Stuttgart

Inst. für Biomaterialien und biomolekulare Systeme (IBBS) Forschungseinheit Biodiversität & wissenschaftliches Tauchen (BioDiv)

Okologischen Fußabdruck von synthetischen Zuschlagstoffen auf Reitplätzen

Prof. Dr. Franz Brümmer
Universität Stuttgart

LUBW-Kolloquium 2023 Kreislaufwirtschaft Karlsruhe 09. Februar 2023

Plastik – eine Erfolgsgeschichte! ...auch im Sport!

- Plastik wird überall genutzt
- Plastik wird überall benötigt
- Plastik ist überall!
- Ohne Plastik geht es nicht und geht (fast) Nichts!
- Plastik ist extrem haltbar und vielseitig! Toller Werkstoff!

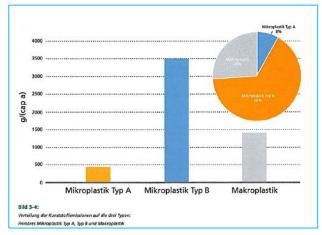
Ein ALLESKÖNNER!

- Plastikinseln in den Ozeanen, in der Tiefsee, in Flüssen und Seen, in Tieren, im Boden, in der Luft, im Menschen, ...
- Unvorstellbar große Mengen in den Meeren!
- Mikroplastik, Nanoplastik, ...

Eine große Gefahr für die Umwelt!

Nicht der Kunststoff ist das Problem, sondern wie wir damit umgehen und das Plastik entsorgen!

www.teamkunststoff.de



Kunststoffemissionen in D:

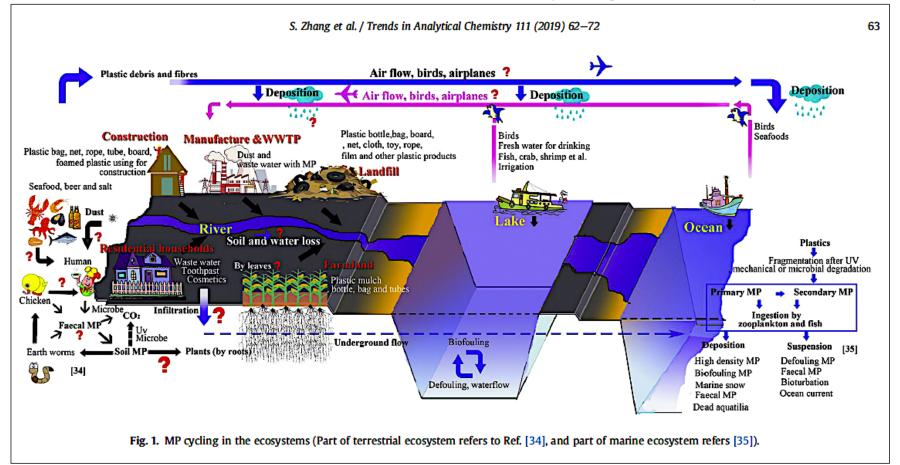
Makroplastik: 116.000 t/a bzw. 1.405 g/(cap a)

Mikroplastik: 333.000 t/a bzw. 4.000 g/(cap a)

Produktion Primäres MP Typ A Nutzung Primäres MP Typ B Makroplastik Typ B Umwelt Sekundäres MP

Mikroplastik 1nm ≤x≤ 5mm

Primäres MP:

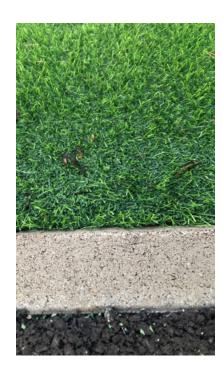

eigens für spezifischen Zweck hergestellt

Sekundäres MP:

Entsteht durch Zerfall von Kunststoffen bei der Nutzung, durch Umwelteinflüsse, ...

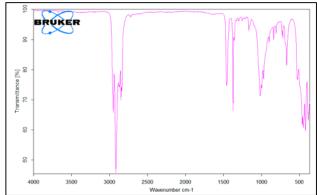
Universität Stuttgart

Quellen für Mikroplastik in der Umwelt – "MP cycling in the ecosystems"



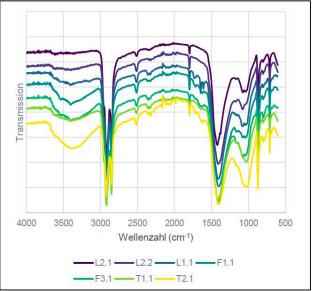


Mikroplastik als Einfüllstoff ca. 30 t pro Spielfeld (je nach Bauart & Größe)



Universität Stuttgart 20.01.2016

Tennisplatzbeläge / Austrag / Zusammensetzung



Tennisplatzbeläge / Austrag / Zusammensetzung

Reitanlagen

Tretschichten von Reitplätzen

- Sand
- Sand mit Zuschlagstoffen

Zuschlagstoffe (Verbesserung Trittfestigkeit und Wasserspeicherfähigkeit):

Holzschnitzel, Frässpäne, Gatterspäne (Weichholz)

Baumwoll-, Schafwollmaterial

synthetische Zuschlagstoffe Kunststoffe und Textilreste (Teppichreste, Faserbündel)

(Ebbe-Flut-Plätze)


Aufbau eines Reitplatzes Beispiel: Dreischichtbauweise

Aufbau eines Reitplatzes Beispiel: Dreischichtbauweise

Aufbau eines Reitplatzes Beispiel: Dreischichtbauweise

Sand-Kunststoffgemische synthetische Zuschlagstoffe

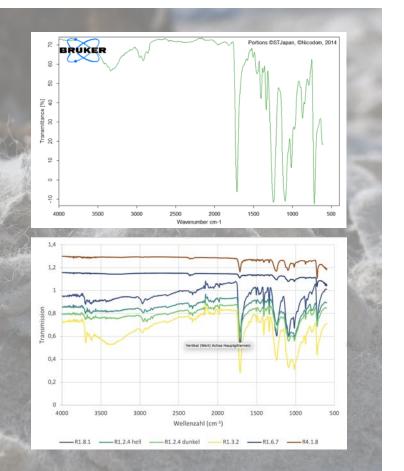
Vollsynthetische Reitbodenbeläge

Synthetische Zuschlagstoffe: Zahlen und Definition

Synthetische Zuschlagstoffe / (Ab-)Nutzung / Zerrieb / Vermischung / Mikroplastik

Synthetische Zuschlagstoffe: Zahlen und Definition

Die Zugabemengen der synthetischen Zuschlagstoffe betragen zwischen 1 und 3 kg pro m², mit einem Massenanteil in der Tretschicht von ungefähr 0,6 bis 1,8 % (Hemker *et al.*, 2022)


Rund 100 t/a Mikroplastik gelangen durch Reitplätze in die Umwelt (Bertling et al., 2018).

Mikroplastik ist ein fester polymerhaltiger Partikel mit eventuellen Zusatzstoffen und hat eine Größe von 1 nm – 5 mm bzw. bei Fasern eine Länge von 3 nm – 15 mm und ein Längen/Durchmesser-Verhältnis von >3 (ECHA, 2019).

Was für polymere Zuschlagstoffe werden verwendet?

Bestimmung der Kunststoffart durch Fourier-Transform-Infrarot-Spektroskopie am Institut für Kunststofftechnik (IKT) der Universität Stuttgart.

Bei den Zuschlagsstoffen der
Proben handelt es sich nach
Vergleich der FTIR-Spektren mit der
Bruker-Datenbank um PET
(Polyethylenterephthalat).

Weitere Kunststoffe in Reitsportanlagen?

Weitere Kunststoffe in Reitsportanlagen?

Austrag (Mikro-)Plastik von Reitanlagen

Beprobungen an 19 Reitplätzen (11 Anlagen)

15 mit synth. Zuschlagstoffen

bei allen Plätzen:

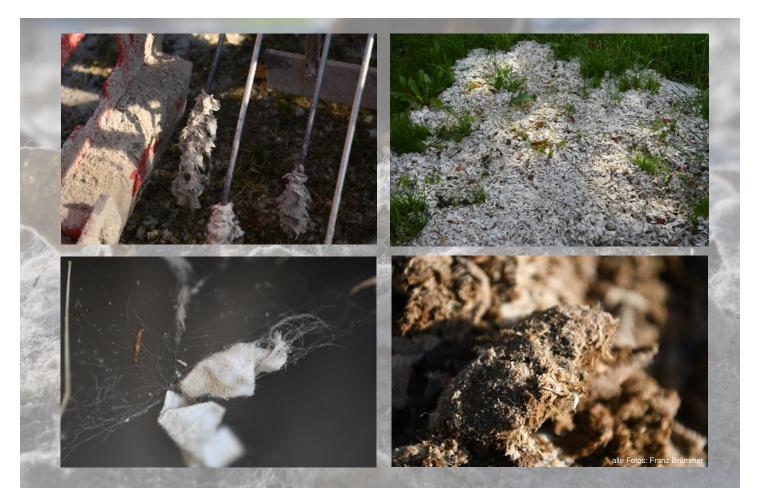
Kunststoffaustrag aus Reitplatz

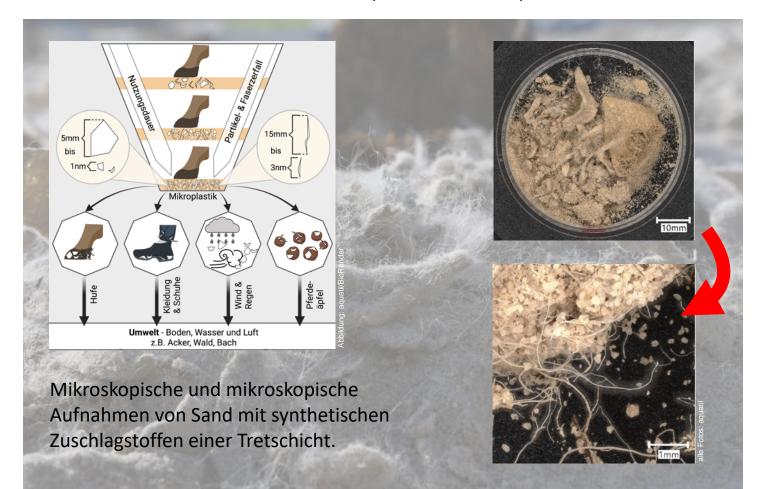
Kunststoff auf den Wegen

Kunststoff in den Entwässerungsgräben

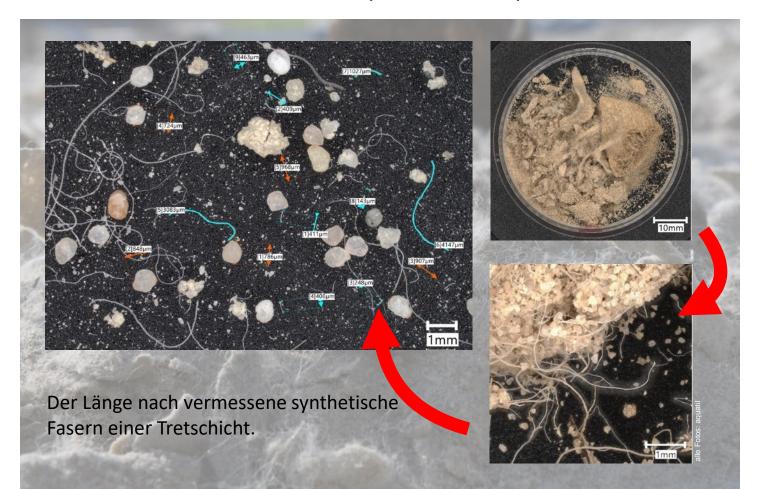
Kunststoff in Abwasserschächten

Direkter Austrag über


Pferd & Reiter, über Geräte und Verwehungen


Universität Stuttgart

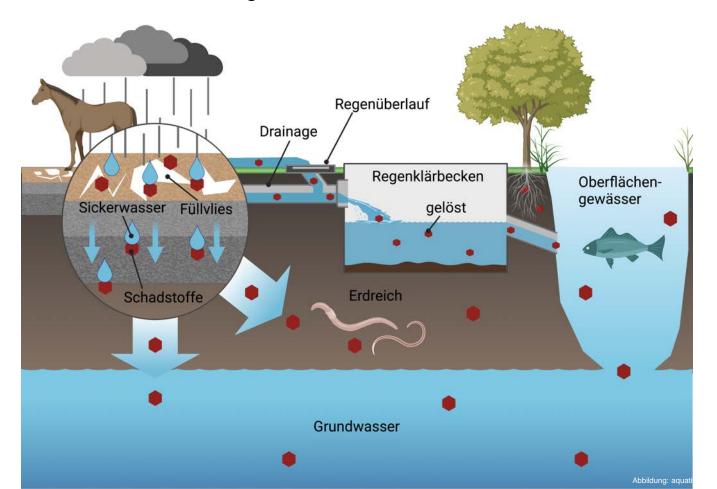
24


Austrag in die Umwelt

Wie entsteht das Mikroplastik auf Reitplätzen?

Wie entsteht das Mikroplastik auf Reitplätzen?

Betrachtung nach ECHA-Definition Länge: $3nm \le x \le 15mm$


Länge/Durchmesser - Verhältnis: >3

Universität Stuttgart

Auswirkungen auf Lebewesen

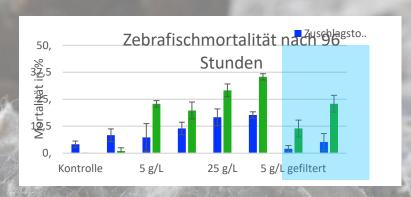
Chemische Analyse möglicher Schadstoffe

Chemische Analyse von polyzyklischen aromatischen Kohlenwasserstoffen sowie Fluor, Chlor und Brom und 14 Schwermetallen - fast keine Werte über den angegebenen Orientierungswerten (LANUV, 2021).

PAK (mg/kg)	R1.4.3	R1.6.4	R1.8.1	R4.1.7	
Benzo(a)anthracene	0	0	0	0	
Benzo(b)fluoranthene	0	0	0	0	
Benzo(j)fluoranthene	0	0	0	0	
Benzo(k)fluoranthene	0	0	0	0	
Benzo(a)pyrene	0	0	0	0	
Benzo(e)pyrene	0	0	0	0	
Chrysene	0	0	0	0	
Dibenzo(a,h)anthracene	0	0	0	0	
Summe 8 PAK (mg/kg)	0	0	0	0	
Benzo(g,h,i)perylene	0	0	0	0	
Indeno(1,2,3-cd)pyrene	0	0	0	0	
Naphthalene	0	0	0	0	
Anthracene	0	0	0	0	
Fluoranthene	0	0	0	0	
Phenanthrene	0	0	0	0.32	
Pyrene	0	0	0	0	
Summe Anthracen, Fluoranthen, Phenanthren, Pyren	0	0	0	0.32	
Summe 15 PAK (mg/kg)	0	0	0	0.32	
Acenaphthylene	0	0	0	0	
Acenaphthene	0	0	0	0	
Fluorene	0	0	0	0	

Halogene (Ma% TS)	LANUV	Eurofins						
		Bestimmungsgrenze	R1.3.7	R1.4.6	R4.1.8	R4.2.1	R1.6.7	R1.2.8
Fluor, ges.	n.b. (< 0,005)	0.005	0.013	<0,005	<0,005	<0,005	<0,005	<0,00
Chlor, ges.	0.07	0.007	0.902	0.401	0.01	<0,007	0.701	<0,00
Brom, ges.	0.03	0.005	<0,005	0.012	<0,005	<0,005	0.016	<0,00
Schwermetalle (mg/kg TS)								
Antimon	270	1	<1	<1	<1	1	<1	<1
Arsen	10	0.8	<0,8	1,2±0,24	<0,8	<0,8	1,2+0,24	<0,8
Blei	40	2	3±0,6	4±0,8	<2	<2	5+1	2±0,4
Cadmium	0.2	0.2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2
Chrom, ges.	30	1	2±0,4	2±0,4	<1	2±0,4	1+0,2	2±0,4
Cobalt	25	1	4	<1	<1	4	5	2
Kupfer	10	1	1±0,2	1±0,2	<1	<1	2+0,4	<1
Molybdän	4	2	<2	<2	<2	<2	<2	<2
Nickel	15	1	2±0,4	1±0,2	<1	2+0,4	2+0,4	1±0,2
Quecksilber	0.2	0.07	<0,07	<0,07	<0,07	<0,07	<0,07	<0,07
Selen	3	1	<1	<1	<1	<1	<1	<1
Thalium	0.5	0.2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2
Vanadium	200	1	2	1	<1	4	1	<1
Zink	30	1	7±1,3	8±1,4	7±1,3	13+2,3	15+2,7	3±0,5

Ökotoxikologische Analyse


Ökotoxikologische Analyse

Zebrafischembryonen

- erhöhte Mortalität, geringere Schlupfrate bei Kunststoff als Zuschlagstoff
- geringere Mortalität bei Holz als Zuschlagstoff
- in gefilterten Eluaten geringer partikelabhängige Wirkungen

Wasserflöhe

- deutliche Immobilität der Wasserflöhe bei hohen Konzentrationen
- geringere Effekte bei den gefilterten Ansätzen partikelabhängige Wirkungen

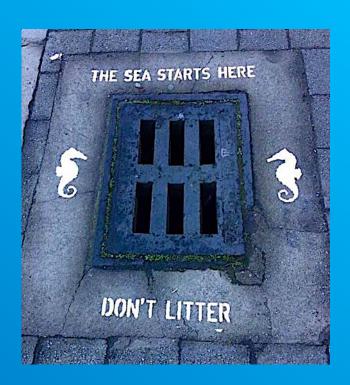
Reitplätze mit kunststoffhaltigen Tretschichten

Quidquid agis, prudenter agas et respice finem.

"Was auch immer du tust, tue es klug und bedenke die Folgen."

Biodiversität & wissenschaftliches Tauchen

Vielen Dank!


Prof. Dr. Franz Brümmer

E-Mail franz.bruemmer@bio.uni-stuttgart.de
Telefon +49 (0) 711 685-65083
www.uni-stuttgart.de/bio

Universität Stuttgart

Pfaffenwaldring 57

70569 Stuttgart

