Banner des ISF mit einer Fotografie einer Phytoplanktongemeinschaft aus runden und sternförmigen Algen

Lebensgemeinschaft des Freiwassers

Da bei vielen Seen der Freiwasserraum den vorherrschenden Anteil am Wasserkörper bildet, wird im allgemeinen auch der Schwerpunkt der hydrobiologischen Untersuchungen auf die Lebensgemeinschaft des Freiwassers gelegt. Diese besteht einerseits aus dem passiv mit dem Wasserkörper driftenden Plankton mit Phytoplankton als Primärproduzenten, Zooplankton als Konsumenten und den heterotrophen Mikroorganismen als Destruenten, und andererseits aus dem aktiv gerichtet schwimmenden Nekton, wozu insbesondere die Fische zählen. Plankton und Nekton sind die Akteure im ständigen Stoffkreislauf des Sees.
Die im Plankton vorkommenden Arten werden laufend vom Institut für Seenforschung meistens an einer Station (Seemitte) in regelmäßigen Zeitabständen überwacht (14 täglich bis monatlich).

 

Die Grafik zeigt das Nahrungsnetz im Bodensee: Phytoplankton als Produzenten, Zooplankton als Konsumenten bzw. Folgekonsumenten und Fische als Folgekonsumenten bzw. Endkonsumenten.

 

 

Phytoplankton

Beim Phytoplankton handelt es sich um mikroskopisch kleine, im Wasser schwebende phototrophe Organismen, die einerseits zur Pflanzengruppe der Algen und andererseits zur Bakteriengruppe der Cyanobakterien gehören. Als photoautrophe Planktonorganismen bauen sie aus im Wasser gelösten Nährsalzen und Kohlensäure mit Hilfe des Sonnenlichts ihre Körpersubstanz auf. Sie stellen daher als „Primärproduzenten“ die Basis der Nahrungskette dar, die direkt oder indirekt als Energie- und Kohlenstoffquelle für alle anderen Organismen in einem Gewässer dient.

Sowohl die Biomasse als auch die Artenzusammensetzung des Phytoplanktons sind wichtige Hinweise auf den Zustand eines Gewässers: eine niedrige Biomasse zeigt im Allgemeinen an, dass im Gewässer ein niedriges Nährstoffniveau herrscht, ein hohes Nährstoffniveau wird zu einer hohen Biomasse führen. Bestimmte Arten sind typisch für höhere Nährstoffkonzentrationen, andere Arten werden nur bei niedrigeren Konzentrationen gefunden, wieder andere Arten sind von der Nährstoffkonzentration weitgehend unabhängig.

Das Phytoplankton wird nach Zusammensetzung und Biomasse erfasst. Dabei werden die Großgruppen der Cyanobakterien (Blaualgen) und der eukaryontischen Algen mit Euglenophyta (Augenflagellaten) Chromophyta (Kieselalgen u. Goldalgen), Dinophyta (Panzerflagellaten), Cryptophyta (Schlundalgen) und Chlorophyta (Grünalgen) durch Zählung der jeweils zugehörigen Einzelarten erfasst.

Eine Abschätzung der Biomasse und der Gruppenzusammensetzung kann auch über die chemische Bestimmung der Algenpigmente erfolgen.

Mikroskopische Aufnahmen 5 verschiedener Phytoplanktonarten in ihrer faszinierenden Vielfalt in Form und Farbe

Fotos: Diverse Phytoplankton-Arten unter dem Mikroskop. Von links nach rechts: Scenedesmus, Phacus, Ceratium, Cryptomonas, Microcystis.

Zooplankton

Die wichtigsten Gruppen des Zooplanktons sind die Kleinkrebse mit Cladoceren („Wasserflöhe“) und Copepoden („Hüpferlinge“), die Rotatorien („Rädertiere“), die Protozoen (Urtiere) mit Flagellaten und Ciliaten.

Die meisten Arten ernähren sich von Algen, einige auch von Bakterien, wieder andere räuberisch durch Fressen anderer Zooplankter. Die Produktion des Zooplanktons (Wachstum und Fortpflanzung) ist im Wesentlichen abhängig von der Art und der Menge der vorhandenen Futteralgen sowie von der Temperatur. Daher ist in der Regel die Produktion im Sommer beschleunigt und im Winter verlangsamt. Die Art, Größe und Form der Algen bestimmt ihre Fressbarkeit. Die Menge der fressbaren Algen beeinflusst insbesondere bei hohen sommerlichen Temperaturen die Wachstums- und Fortpflanzungsgeschwindigkeit des algenfressenden Zooplanktons.

Die Konkurrenz der einzelnen Zooplanktonarten um die gemeinsame Nahrungsgrundlage ist sehr komplex und von zahlreichen artspezifischen Faktoren abhängig. Durch den Fraß von einzelnen „bevorzugten“ Phytoplanktonarten ändern sich die Wachstumsbedingungen der verbleibenden Phytoplanktonarten. Die resultierenden Änderungen in Qualität und Quantität des „Phytoplanktons“ wirken sich wiederum auf das "Zooplankton" aus. Das „Zooplankton“ seinerseits dient als Nahrungsgrundlage für räuberische Zooplanktonarten und für Fische. Auch hier gibt es komplexe Wechselwirkungen. Menge und Zusammensetzung des Zooplanktons geben daher insbesondere Auskunft über die Struktur des Nahrungsnetzes in einem Gewässer und stellen somit neben der Trophie eine weitere wichtige Informationsquelle zur Zustands-Bewertung eines Gewässers dar.

Das Zooplankton wird entweder durch Netzfänge (Crustaceen und Rotatorien) oder durch Schöpfproben (Protozoen) aus unterschiedlichen Tiefen erfasst und mikroskopisch ausgewertet.

Mikroskopische Aufnahmen dreier Zooplanktonvertreter in ihrer faszinierenden Einzigartigkeit in Form und Farbe

Fotos: Diverse Zooplankton-Vertreter unter dem Mikroskop. Ruderfußkrebs (links); Wasserfloh (mittig); Rädertierchen (rechts).

 

Heterotrophe Mikroorganismen

Neben den pflanzlichen (Produzenten) und tierischen Vertretern des Planktons (Konsumenten) bilden die mikroskopisch kleinen heterotrophen Mikroorganismen (Destruenten) sowohl im Hinblick auf Biomasse als auch für die Stoffkreisläufe eine dritte wichtige funktionelle Gruppe der Lebensgemeinschaft des Freiwassers. Zu dieser zählen einerseits die heterotrophen Bakterien, andererseits einzellige bakterienfressende Urtierchen (Protozoen), darunter vor allem Geißeltierchen (Flagellaten) und Wimpertierchen (Ciliaten). Die Bakterien erfüllen zusammen mit den bakterienfressenden Urtieren über die sogenannte Detritus-Nahrungskette (microbial loop) vorrangig die Funktion des Abbaus der organischen Substanz und damit der Regeneration von Nährstoffen. Über die so ermöglichten kurzgeschlossenen Stoffkreisläufe in der Freiwasserzone können die heterotrophen Mikroorganismen maßgeblich die Produktivität eines Gewässers mitbestimmen.

Im Vergleich zum klassischen Plankton ist die Kenntnis der Artzusammensetzung der heterotrophen Mikroorganismen bislang noch sehr unzureichend, was vor allem auf methodischen Schwierigkeiten beruhte. Daher wurden bis jetzt Indikationsansätze, die auf der Artzusammensetzung beruhen, für diese Gruppe kaum entwickelt. Eine Ausnahme bilden die relativ leicht nachweisbaren Fäkal-Indikatoren (v.a. E. coli), die als Darmbakterien üblicherweise in natürlichen Gewässern nicht vorkommen. Deren Nachweis zeigt somit sehr sicher und hochempfindlich eine Verunreinigung mit fäkalbelastetem Abwasser an. Da inzwischen zusätzliche Bestimmungsmöglichkeiten über die Analyse artspezifischer molekularer Bestandteile (insbesondere der Nukleinsäuren) der Mikroorganismen zur Verfügung stehen, ist für die Zukunft mit einer erheblich verbesserten Nutzung des Indikationspotenzials weiterer heterotropher Mikroorganismen zu rechnen.

Mikroskopische Aufnahme von Bakterienplankton, das nach Anfärbung mit Fluoreszenzfarbstoff leuchtend grün sichtbar wird.

Foto: Bakterienplankton nach Anfärbung mit Fluoreszenzfarbstoff unter dem Mikroskop.

 

Fische

Die Grafik zeigt die Fischverteilung im Bodensee. Im blauen Bereich gibt es wenige, im roten viele Fische. Die überwiegende Farbe ist grün, welche auf eine mäßige Fischverteilung hinweist.

Fische stehen, wie einige Kleinkrebse, als Folgekonsumenten am Ende der Nahrungskette im Freiwasser. Zu den vorherrschenden Planktonfressern zählen in großen tiefen Seen die Felchen, in kleineren Seen Barsche und Weißfische (z. B. Rotfedern, Brachsen). Als Raubfische sind Hechte, Zander und erwachsene Barsche unterwegs. Über ihre Fresstätigkeit beeinflussen die Fische die Zusammensetzung der Lebensgemeinschaft im Freiwasser.

Aktuell werden Fragen nach den Reaktionen der Fischbestände auf die Reoligotrophierung im Bodensee untersucht. Hierzu erfolgen Erhebungen über Bestandsverteilung, Altersstruktur und Laicherfolg mit Hilfe von Ultraschall-Techniken, Stichproben aus Netzfängen unterschiedlicher Maschenweiten und durch Erfassung von Menge und Anteil befruchteter Eier am Seeboden.

Weitere Informationen zur Fischerei finden sie auch auf der Internetseite der Fischereiforschungsstelle.

 

Die mikroskopische Aufnahme zeigt zahlreiche runde Felcheneier.Die mikroskopische Aufnahme zeigt eine Felchenlarve vor dem Schlüpfen. Es sind bereits die Augen und weitere Muster erkennbar.